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1Abstract— The security of computer systems often relies 

upon decisions and actions of end users. In this paper, we set out 

to investigate users’ susceptibility to cybercriminal attacks by 

concentrating at the most fundamental component governing 

user behavior – the human brain. We introduce a novel 

neuroscience-based study methodology to inform the design of 

user-centered security systems as it relates to cybercrime. 

Specifically, we report on an fMRI study measuring users’ 

security performance and underlying neural activity with respect 

to two critical security tasks: (1) distinguishing between a 

legitimate and a phishing website, and (2) heeding security 

(malware) warnings. We identify neural markers that might be 

controlling users’ performance in these tasks, and establish 

relationships between brain activity and behavioral performance 

as well as between users’ personality traits and security behavior. 

Our results provide a largely positive perspective on users’ 

capability and performance vis-à-vis these crucial security tasks. 

First, we show that users exhibit significant brain activity in key 

regions associated with decision-making, attention, and problem-

solving (phishing and malware warnings) as well as language 

comprehension and reading (malware warnings), which means 

that users are actively engaged in these security tasks. Second, we 

demonstrate that certain individual traits, such as impulsivity 

measured via an established questionnaire, are associated with a 

significant negative effect on brain activation in these tasks. 

Third, we discover a high degree of correlation in brain activity 

(in decision-making regions) across phishing detection and 

malware warnings tasks, which implies that users’ behavior in 

one task may potentially be predicted by their behavior in the 

other. Fourth, we discover high functional connectivity among 

the core regions of the brain while users performed the phishing 

detection task. Finally, we discuss the broader impacts and 

implications of our work on the field of user-centered security, 

including the domain of security education, targeted security 

training, and security screening. 

I. INTRODUCTION  

 Computing has become increasingly common in many 

spheres of users’ daily lives. At the same time, the need for 

securing computer systems has become paramount. To enable 

secure on-line interactions, actions performed and decisions 

made by human users need to be factored into system design – 

a principle sometimes referred to as “human in the loop” [9]. 

Two such prominent user-centered security tasks are: (1) 

distinguishing between a legitimate and a fake website 

(phishing detection task), and (2) heeding warnings provided 
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by modern browsers when connecting to potentially malicious 

websites (malware warnings task).  

The field of user-centered security has received 

considerable attention recently but is still in its infancy. As 

such, researchers’ understanding of end user performance in 

real-world security tasks is neither very precise nor very clear. 

Previous computer lab-based studies focusing on security 

warnings and security indicators (e.g., [10, 12, 13, 14, 15, 16, 

17]) have concluded that users do not perform well at these 

tasks and may often ignore them. This general wisdom has 

been called into question however by a large-scale field study 

of browsers’ tasks relating to phishing, SSL and malware 

warnings [11] which showed a high likelihood users actually 

heeded the warnings they received.   

User attitudes, perceptions, acceptance and use of 
information technology have been long-standing issues since 
the early days of computing. Users’ personal characteristics 
are also identified as one of the important factors affecting 
phishing detection and malware warnings interactions (e.g., 
[60, 61, 62, 63]). In this light, it is important to understand 
users’ behavior and personality characteristics pertaining to 
the execution of security tasks, and users’ potential 
susceptibility to attacks.  

Our goal in this paper was to enhance current knowledge 

in, and address fundamental questions pertaining to, user-

centered security from a neuropsychological standpoint. The 

primary questions driving our research included: (1) what 

brain regions are activated and functionally connected while 

performing security tasks?; (2) how well do users perform  

these tasks?; (3) do certain personality traits (like impulsivity, 

or attention control) influence users’ security behavior and 

performance?; and (4) are users’ behavior in one security task 

related to their behavior in another.   

 To answer these inquiries, we developed a novel 

methodology for studying user-centered security that involves 

neuroimaging. Using this general methodology, our 

overarching goal was to delineate the nature of cognitive and 

neural processes that underlie user-centered security decisions 

and actions. This specific goal was achieved via fMRI 

(functional Magnetic Resonance Imaging) scanning. fMRI is a 

Blood Oxygen Level Dependent function measure, and is 

derived from a combination of stimulus-induced changes in the 

local cerebral blood flow, local blood volume, and local 

oxygen consumption rate [5,6]. fMRI provides a unique 

opportunity to examine in-vivo brain responses mediating user 

decisions during human-computer security interactions. As a 

first line of investigation into our novel methodology, our 
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fMRI-based study sheds light on end users’ behavior and 

performance with respect to the important tasks of phishing 

detection and responding to malware warnings. 

Contributions: Our main contributions in this paper are 

summarized as follows: 

1. Novel Methodology to Study User-Centered Security: We 

propose a new methodology for studying neurological 

patterns governing users’ performance and behavior with 

respect to user-centered security tasks. 

2. fMRI Study of Phishing, and Malware Warnings: As a 

specific use case of our methodology, we designed and 

developed in-scanner fMRI experiments for phishing 

detection and malware warnings tasks (Section III), and 

conducted a user study by recruiting and scanning 25 

individuals performing these tasks. (Section IV) 

3. Comprehensive Neural and Behavioral Analysis: We 

provide a comprehensive analysis of neuroimaging and 

behavioral data, not only evaluating the phishing and 

malware warnings experiments independently but also 

contrasting them with each other. We also perform functional 

connectivity analysis to identify the interaction among 

different brain regions corresponding to tasks relating to 

phishing detection and responding to malware warnings. 

(Section V-VIII) 

This paper is an extension and consolidation of our NDSS 
2014 paper [7]. From our previous analysis, we identified the 
regions of interest (ROI) -- brain areas activated when 
completing tasks in phishing detection and control, and 
responding to malware warnings. In our extension, we 
systematically investigated the functional connectivity among 
these ROIs (see Section VI). We performed (1) whole-brain 
analysis, where the functional connectivity of one ROI with 
the rest of the brain was examined; (2) region of interest 
analysis, in which we examined functional connectivity 
among ROIs, and (3) brain-behavior analysis, which 
examined the functional connectivity of each ROI and 
impulsivity as a co-variate. We found strong functional 
connectivity in the phishing detection task compared to the 
phishing control task. This result confirms findings of our 
original analysis. The stronger level of functional connectivity 
suggests greater coordination among brain areas while 
identifying phishing websites. We did not find any statistically 
significant results during analyses of responses to malware 
warnings, however. 

Finally, we discuss the broader impacts and implications 

of our work for the field of user-centered security, including 

the domain of security education, targeted security training, 

and security screening. (Section VIII) 

II. RELATED WORK 

Our study centers on phishing detection and malware 

warnings. Most closely relevant to the phishing component of 

our study is the lab study reported by Dhamija et al. [10] with 

22 participants who were asked to distinguish between real 

and fake websites. Results indicated that users do not do well 

at this task as they made incorrect choices 40% of the time. 

Our behavioral data yielded similar results. However, our 

neuroimaging data show that users exhibited significant brain 

activation during the fake or real website identification task. 

This suggests that although the outcome of participants’ 

efforts to differentiate between fake and real websites may not 

be good (perhaps because they did not know what to look for 

on the sites to make a decision), they seemed to be 

undertaking considerable effort in solving the puzzles as 

reflected by activity in appropriate brain regions during the 

decision-making process. 

A recent large scale field study reported by Akhawe and 

Felt [11] used modern browsers’ telemetry frameworks to 

record users’ real-world behavior when interacting with 

malware, as well as phishing and SSL, warnings. Unlike 

previously conducted lab-based studies of security warnings 

and security indicators (see below), this study demonstrated 

that users heeded warnings most of the time. Specifically, 

Akhawe and Felt found that users ignored Chrome’s and 

Firefox’s phishing and malware warnings between 9% and 

23% of the time, and ignored Firefox’s SSL warnings 33% of 

the time. These results are very much in line with results of 

our study, which provides neurological proof of users’ ability 

to process and heed malware warnings.  

For over a decade, many lab studies have focused on 

different browser security indicators (passive indicators, and 

active warnings for phishing and SSL attacks) [12, 13, 14, 15, 

16, 17]. All of these studies suggested that users seldom act 

upon warnings and security indicators. (We refer to Akhawe 

and Felt [11] who provide an excellent survey of the results of 

these studies). Akhawe and Felt [11] attributed the stark 

difference in the results of prior lab studies focusing on 

warnings, and their own field study mainly to changes in the 

nature of browser warnings.  

Users’ personal characteristics are also identified as one of 

the important factors affecting their susceptibility to phishing 

attacks [60, 61, 62, 63]. Viswanathan et al. [59] argued that 

different attributes of email messages such as source, body 

content, attention to urgency, attention to title, computer self-

efficacy, and amount of emails received, affect detection of 

phishing emails. The Communication-Human Information 

Processing model proposed by Wogalter [60] defines the 

sequence of warnings effect, and assumes attention, memory, 

attitudes, motivation and behavior as several factors affecting 

it. The information processing model process studied by 

Mayhorn et al. [61] showed that personality factors like 

impulsivity, trust/distrust, anxiety, and calmness measured 

using standard questionnaires, affect detection of phishing 

emails. Pattison et al. [62] found that less impulsive 

individuals are better at identifying and managing phishing 

emails. Both of these studies used a role-based method [48] to 

study phishing detection. Wogalter and Mayhorn [63] 

discussed the need to tailor warnings to accommodate 

differences in individual characteristics, situations, experience, 

and skill level. In our study, we wanted to see how neural 
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responses of users with different personal characteristics differ 

while identifying phishing websites. 

A previous neuroimaging study somewhat relevant to our 

work was performed by Craig et al. [18]. This study aimed at 

understanding users’ behavior when viewing advertisements, 

including the level of suspicion aroused by deceptive 

advertising. Their study found activation of the precuneus and 

superior temporal sulcus brain regions while participants 

processed different levels of deceptive stimuli. This has 

relevance to user-centered online security interactions, as 

users may become suspicious when they encounter phishing 

sites or connect to malware-prone websites. While Craig et al. 

point to the cognitive dangers associated with moderately 

deceptive materials, our phishing task presented participants 

with a “real life” online security scenario where they had to 

determine whether the website was malicious or real.  

There have been other studies that applied neuroscience 

principles to computer security problems, [19, 20, 52, 53]. 

Bojinov et al. [19] proposed a neuroscience-inspired approach 

to coercion-resistant authentication. Thorpe et al. [52], and 

Chung et al. [53] explored user authentication using EEG 

devices. Martinovic et al. [20] explored the feasibility of side 

channel attacks with commodity brain-computer interfaces.  

TABLE I. SAMPLE LIST OF WEBSITES USED IN THE PHISHING EXPERIMENT 

Website URL 

Amazon http://www.amazon.1click.com/exec/flex-sign-in.com.ch 

WellsFargo  www.vvellsfargo.com 

eBay http://91.109.13.183/~ebay/security/ 

Twitter https://twitter.login.com 

Facebook 
http://securitycenter.3dn.ru/facebook/warning/account/su

spend/index.html 

Gmail https://accounts-google.com/servicelogin?service=mail 

 

III. DESIGN OF EXPERIMENTS 

 Our phishing detection and malware warnings tasks were 

implemented using E-Prime software (Psychology Software 

Tools Inc., Pittsburgh) [2]. 

A. Phishing Detection and Phishing Control 

Phishing is the act of deceiving people by presenting a fake 

website that resembles a real one. For this experiment, we 

identified popular websites and took snapshots of the sites’ 

login pages. We then modified the login pages to create 

fraudulent replications and took snapshots of them as well. 

The snapshots were then categorized into two types: “real” 

and “fake.” The fake website snapshots were further divided 

into two categories: “easy” and “difficult.” The “easy” sites 

were those for which we modified both the URL and the logo 

of the companies; keeping the layout of the webpages intact; 

or we changed the URL of the webpages to an IP address. The 

“difficult” sites were those for which we modified just the 

URL keeping the security icons and parameters intact. Table I 

provides a sample list of the websites used in the experiment 

along with their URLs (we obtained some of the URLs from 

the website www.phishtank.com). The design of fake 

websites, for this experiment, was similar to the design 

adopted in the previous study on phishing detection reported 

by Dhamija et al. [10]. Figure 1 provides a sample of a fake 

website. 

 

Fig 1: Sample Easy Fake (logo and URL different compared to real) 

1) Experiment Design (Phishing): The phishing experiment 

followed an event-related (ER) design. In an ER design, each 

trial is presented as an event with longer inter-trial-interval as 

a recovery time is needed for the hemodynamic response to 

decline between trials. This was done with the goal of 

isolating fMRI response to each item separately. ER designs 

allow different trials to be presented in random sequences, 

eliminating potential confounds such as habituation, 

anticipation, set, or other strategy effects [51]. In this 

experiment, we had 39 trials (12 easy fake, 13 difficult fake 

and 14 real), out of which 3 trials (1 difficult fake and 2 real) 

presented at the beginning of the experiment, were considered 

as practice trials to familiarize the subjects with the task. The 

following instruction was given to the participants: “In this 

experiment, you will see several websites. You have to respond 

whether the website is real or fake via the response page”. 

The experiment also had a fixation baseline condition, each of 

which lasted for 10s. Fixations, in the context of an fMRI 

experiment, are short blocks of time when the participants are 

asked to look at a cross on the screen and relax. They are 

considered as windows of baseline brain activity. Each trial 

displayed a website snapshot for 6s followed by a gap of 6s. 

The experiment started with the set of instructions followed by 

a fixation for 10s, and after every 6 trials, a fixation of 10s 

was displayed on the screen. Thus, in total, there were 7 

fixations and 39 trials and the experiment lasted for 553s. The 

trials were presented to each participant in a randomized order 

and the participants had to express whether the site depicted in 

the snapshot was “real” or “fake” by pressing the designated 

joystick button. We recorded the response given by users and 

the corresponding response time.  

(2) Experiment Design (Phishing Control): The phishing 

control experiment was designed as a control for the stimuli 

presented in the phishing experiment. This experiment was 

identical to the phishing experiment, except that participants 

were instructed to just look at the images displayed on the 

screen, and not to engage in an active task. Thus, this 

experiment had all the visual demands of the phishing 
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experiment except for the decision-making (real or fake 

website) aspect.  

In this experiment, 20 snapshots of login pages of 

different websites, including: Citibank, USPS, Orkut, hi5, 

6pm.com, Google, BankofAmerica, LinkedIn, Chase, 

Instagram, Coupons, Spotify, onlineshoes, Hotmail, BestBuy, 

Yahoo, Discover, AT&T, and Apple and a portal for our 

university, were shown to participants. We used different 

websites than those used in the phishing detection task, as we 

did not want to influence participants’ decisions of real-fake 

identification based on the websites they had seen in this 

experiment. In total, we had 4 fixations (1 in the beginning of 

the trials and 3 after every 6 trials) and 20 trials, and the 

experiment lasted for 268s.  

B. Malware Warnings 

Malware is software created to obtain unauthorized access to 

computer resources and collect private information. We 

wanted to identify the neural patterns when people responded 

to warnings associated with malware. Modern browsers use 

these warning mechanisms to alert users in case they visit a 

likely suspicious website and rely upon users’ input to proceed 

[11]. Our malware warnings experiment consisted of several 

snapshots of news samples and pop-ups of two types: non-

warnings and warnings. A non-warning pop-up contained 

casual information or questions in it like, “CNN is a pretty 

popular news website. We have found that 65% of the people 

like reading news on CNN. We want to know how you feel 

about it. Do you like CNN?”, and a warning pop-up that 

contained details about the malware threat. In this way, the 

non-warning pop-up served as a control condition for the 

warning pop-up. The article itself served the purpose of a 

primary task in which the user was engaged. The news 

samples were collected from popular news websites such as 

CNN, BBC, LA Times, ABC News, and Slashdot.org. We 

collected news items from major categories at the sites  

including entertainment, sports, politics, and general news. 

We recreated the webpages on our own as the fMRI video 

screen only supports a resolution of 640*480 formatted in 

Bitmap configuration. This task required that the subject read 

a series of articles. While reading the articles, they were 

randomly interrupted by a pop-up asking a specific question 

(non-warning), or by a pop-up warning (about a malicious 

threat).  

Experiment Design (Malware Warnings): The experiment 

started with a set of instructions followed by a fixation trial of 

10s. After the fixation, the abstract was presented for 10s, 

followed by a pop-up (warning or non-warning randomly 

presented) for 6s asking the user if he/she wanted to proceed. 

If the user chose not to proceed, a blank screen was displayed 

for 10s; otherwise, a full news article was shown for 10s. 

Fixation of 10s duration was displayed after each trial. This 

was an event-based design and the user gave his input of 

yes/no by pressing the appropriate button on a joystick. We 

incorporated the malware warnings of popular web browsers 

like Chrome, Internet Explorer, Opera, and Mozilla [11]. It 

was difficult to display all the details of warnings shown by 

these browsers but we kept, to the extent possible, the excerpts 

similar to the warnings of these browsers (see Figure 2). In 

total, there were 10 fixations, 20 trials, and the experiment 

lasted for 751s. 

 

Fig 2: A Snapshot of Warning 

C. Our Experimental Set-Up 

 Throughout the project, fMRI data were acquired using the 

3T Siemens Allegra Scanner available to us at the University 

of Alabama at Birmingham. An MRI compatible IFIS-SA 

(Invivo Corp., Gainesville, FL) auditory and visual system was 

used for stimulus presentation. However, in our experiments 

only visual information was presented. This system consists of 

two computers: one for stimulus presentation and another for 

experimental control and analysis. A master control unit is 

used to interface the two computers. We used E-Prime [2] 

software run on the IFIS-SA system to present visual stimuli. 

The visual display in the magnet utilizes an IFIS-SA LCD 

video screen of size 640 * 480 located behind the head-coil that 

is viewed through a mirror attached to the radio frequency (RF) 

coil. MRI compatible response boxes (e.g., joysticks and 

button boxes) are used to receive user responses. The E-Prime 

IFIS-SA systems record reaction times as well as participant 

responses to each stimulus item presented and creates data files 

titled e-dat and t-dat. 

All fMRI tasks followed the same data acquisition 

protocol, as follows. For structural imaging, initial high 

resolution T1-weighted scans were acquired using a 160-slice 

3D MPRAGE (Magnetization Prepared Rapid Gradient Echo) 

volume scan with TR = 200 ms, TE = 3.34 ms, flip angle = 

1210, FOV = 25.6 cm, 256 x 256 matrix size, and 1 mm slice 

thickness. For functional imaging, we used a single-shot 

gradient-recalled echo-planar pulse sequence that offers the 

advantage of rapid image acquisition (Repetition Time = 1000 

ms, Echo Time = 30 ms, flip angle = 60 degrees, Field of 

View = 24 cm, matrix = 64 x 64). This sequence covers most 

of the cortex (seventeen 5-mm thick slices with a 1 mm gap) 

in a single cycle of scanning (1 TR) with an in-plane 

resolution of 3.75 x 3.75 x 5 mm
3
. 

IV. STUDY PROCEDURES 

Our fMRI study followed a within-subjects design, 

whereby each participant performed all the three tasks, 

phishing control, phishing detection, and malware warnings. 

All tasks were performed in one single fMRI scanning session. 
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In our experiments, only visual stimuli were presented. The 

study, including participant recruitment and MRI scanning, 

ran for a period of about 6 months.  

A. Ethical and Safety Considerations 

Our study was approved by the Institutional Review Board 

(IRB) at our university. Care was taken to maximize the safety 

of the participants while being scanned by following standard 

practices. Their participation in the study was strictly 

voluntary. They were given the option to withdraw from the 

study at any point in time. Best practices were followed to 

protect the confidentiality and privacy of participants’ data 

acquired during the study by de-identifying the collected data. 

B. Participant Recruitment & Demographics 

Twenty five healthy university students (14 males and 11 

females; mean age: 21.5 years) participated in our fMRI study.  

Participant demographic information is summarized in Table 

II. The participating students were enrolled in various 

educational programs, including Biology, Music, Athletics, 

Psychology, Physical Education, Biomedical Engineering, 

Mathematics, Medicine, and other programs, resulting in a 

diverse sample of majors.  

TABLE II. PARTICIPANT DEMOGRAPHICS SUMMARY 

N=25 

Gender 14 male;  11  female 
Age Range 19 – 32 years 

Handedness 24 right-handed; 1 left-handed 

Race 13 Caucasian; 5 Hispanic; 6 

Asian; 1 African American 

Non-Native English Speakers 7 

Participants were not included if they indicated having metal 

implanted in their bodies (either surgically or accidentally), 

indicated they were possibly pregnant or were currently 

breastfeeding, or indicated having a history of kidney disease, 

seizure disorder, diabetes, hypertension, anemia, or sickle cell 

disease. Individuals were also excluded if they were taking 

psychotropic medications, had claustrophobia, or had hearing 

problems. Participants were not recruited if they indicated a 

history of a developmental cognitive disorder, anxiety 

disorder, schizophrenia, or obsessive-compulsive disorder.  

C. Pre-Scanning Phase  

The scans were performed at the neuroimaging facility 

available to us at our university. Participants signed an 

informed consent form approved by our university’s 

Institutional Review Board. In addition, participants filled out 

an Edinburgh Handedness form [54], an MRI safety 

questionnaire, and a Barratt’s Impulsivity questionnaire [1]. 

The purpose of the Edinburgh form was to determine 

handedness because handedness may relate to the 

lateralization of hemispheric activity in the participants (right-

handed individuals may be more left-lateralized). The purpose 

of the impulsivity questionnaire was to determine the trait 

impulsivity level of the participants (details in Section V.B). 

Prior to the scan, each participant was shown sample 

images for both the tasks in the form of images on paper. We 

also explained that the participant was to use the button 

response system in the MRI scanner during the tasks. But we 

did not tell the participants before the fMRI scan as to what 

they are supposed to be doing in the experiments.  

D. Scanning Phase  

fMRI data was collected using a Siemens 3.0 T Allegra 

head-only scanner (as discussed in Section III.C). For each 

participant, we set the order of the phishing and malware 

warnings tasks randomly, but always left the phishing control 

as the first task as we did not want the decision making aspect 

of the phishing detection task and malware warnings task to 

affect the phishing control task. We gave appropriate 

instructions to the participants via an intercom before each 

experiment started. Instructions were also provided visually on 

the display screen in the MRI scanner at the beginning of each 

task. Each task was run through the IFIS System Manager.  

After the scanning phase was over, we compensated the 

participant with either course credits or a $50 cash reward, 

depending on their status.    

V. ANALYSIS AND STUDY RESULTS 

A. Behavioral Data Analysis 

Phishing Detection Experiment: During the phishing 

experiment, we recorded the response made by the 

participants and the corresponding response time.   

TABLE III: ACCURACY(%) AND RESPONSE TIME (MILLISECOND) 

Trials μacc    (σacc) μtime   (σtime) 

Real 76.68 (18.84) 3323 (1066) 

Fake 46.48 (20.58) 3276 (584) 

Easy Fake 56.57 (23.29) 3077 (625) 

Difficult Fake 33.98 (23.61) 3538 (645) 

All 60.42 (13.99) 3347 (654) 

Based on the recorded data, we collected statistics for 

participant accuracy (acc) and response time (time) for 

different types of trials (see Table III). Accuracy is defined as 

the fraction of times a particular trial was correctly identified 

out of the total number of occurrences for that trial. 

We observed that, on average across all trials, participants 

took 3.35 seconds to make their decisions, but their accuracy 

was only about 60%, only slightly better than a random guess. 

Prior work by Dhamija et al. [10] reported very similar results 

based on their computer-based lab study. We used repeated 

measure ANOVA with Greenhouse-Geisser correction, and 

determined that the mean response times for real, easy fake 

and difficult fake trials were statistically significantly different 

(F(1.91, 40.20) = 10.14, p<.001). On further analysis using 

paired t-tests with Bonferroni correction, we found that users 

spent statistically significantly more time in real websites as 

compared to easy fake websites (t(21) = 3.307, p=.003), and in 

difficult fake websites as compared to easy fake websites 

((t)21) = 4.05, p=.001). Similarly, we found that a statistically 

significant difference existed among accuracies for these trials 

(F(1.92, 40.51) = 48.13, p <.001). On further analysis using 

paired t-tests with Bonferroni correction, we found statistically 
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significantly higher accuracy of real websites than fake 

websites (t(21) = 7.5, p=.000), easy fake websites (t(21) = 

4.86, p=.000) and difficult fake websites (t(21) = 9.098, p = 

.000). We also found statistically significantly higher accuracy 

of easy fake websites compared to difficult fake websites 

(t(21) = 5.44, p = .000).  

We did not find statistically significant correlation of 

phishing detection task performance with users’ personality 

characteristics and gender. 

Malware Warnings Experiment: Similar to the phishing 

experiment, we collected statistics for subjects’ accuracy (acc) 

and response time (time) for the different malware warning 

conditions (see Table IV). Accuracy is defined as the fraction 

of times a participant pressed “No” for a warning or non-

warning condition out of its total number of occurrences. 

TABLE IV:ACCURACY(%) AND RESPONSE TIME (MS) 

Condition μacc       (σacc) μtime   (σtime) 

Non-Warnings 67.49 (26.57) 4228 (664) 

Warnings 88.71  (28.62) 3715 (1141) 

An important observation is that subjects’ accuracy in heeding 

the warnings was quite high (about 89%), which means that 

participants paid attention to these warnings and chose not to 

“click-through” most times. This result is in line with the 

results from a recent large-scale field study of Akhawe and 

Felt [11]. It is also validated by the high brain activation in 

regions associated with language comprehension, visual 

attention and decision making as shown by our neuroimaging 

analysis (Section V. B.) 

We did not find any statistically significant correlation of 

users’ task performance in the phishing detection and malware 

warnings tasks. 

B. Neuroimaging Data Analysis 

All acquired fMRI images were converted from DICOM 

(Digital Imaging and Communications in Medicine) format to 

NIFTI (Neuroimaging Informatics Technology Initiative) 

format using the Free Surfer software 

(http://surfer.nmr.mgh.harvard.edu/). Data was preprocessed 

using SPM8 software (Wellcome Trust Centre for 

Neuroimaging, London, United Kingdom) within MATLAB 

and an in-house software. Functional data preprocessing 

started with slice time correction to account for the interleaved 

pattern of scan slice acquisition. All slices were realigned to 

the mean image in the scan. All images were then normalized 

to the EPI template provided by SPM8 using a 2mm
3
 

resampling voxel. Head motion was examined in three 

translational directions x, y, and z, and three rotations: pitch, 

roll, and yaw. A cut off point of 1 mm in any direction was 

kept as the criteria for motion. After these quality control 

measures, data from three participants from the phishing 

experiment were discarded resulting in 22 usable datasets for 

that experiment and also for the phishing control experiments. 

All participants’ datasets were used for the malware warnings. 

Finally, all normalized images were smoothed using a 

Gaussian filter of 8mm full width half maximum.  

Statistical analyses were performed on individual and 

group data using the General Linear Model (GLM). In GLM 

analysis, each voxel in the brain will have a signal time-series 

for a given experiment based on how that voxel behaves in 

response to a specific task. The GLM formula is Y = X*β+ε, 

where Y is the fMRI signal at various time points at a single 

voxel, X is several components (the design matrix with 

different conditions, such as real, fake, or malware) that can 

explain the observed fMRI signal, β is the parameter that 

defines the contribution of each component of the design 

matrix to the value of Y, and ε is the difference between the 

observed data (Y) and that predicted by the model (X*β). 

Group analyses were performed using a random-effects 

model. Regions of interest (ROIs) with statistically significant 

activation were identified using a t-statistic on a voxel by 

voxel basis. Separate regressors were created for real, fake, 

and fixation stimuli in the phishing experiment, and abstract, 

warning, and no-warning for the malware experiment by 

convolving a boxcar function with the standard hemodynamic 

response function as specified in SPM. Statistical maps were 

superimposed on normalized T1-weighted images. All data 

were intensity-thresholded at p=.001, with a cluster size 

correction per region for a family wise error (FWE) rate of 

.05. To determine the voxel threshold for significance, a 

minimum cluster thresholding operation was performed using 

the AlphaSim software package in AFNI (Analysis of 

Functional Neuroimages) [56]. Ten thousand Monte Carlo 

simulations were generated to maintain the FWE rate at .05 

for the whole brain. Thus, for a given region to be considered 

significantly active, it would need to have a minimum cluster 

size of 64mm
3 
[21]. 

TABLE V. ABBREVIATIONS FOR BRAIN REGIONS 

Acronym Brain Region 

MPFC Medial Prefrontal Cortex 

RIFG/LIFG Right/Left Inferior Frontal Gyrus 

RMFG/LMFG Right/Left Middle Frontal Gyrus 

ROFC/LOFC Right/Left Orbitofrontal Cortex 

RMTG/LMTG Right/Left Middle Temporal Gyrus 

RSTG /LSTG Right/Left Superior Temporal Gyrus 

RIPL/ LIPL Right/ Left Inferior Parietal Lobule 

ROC/LOC Right/Left Occipital Cortex 

SMA Supplementary Motor Area 

 

(1) Phishing Control vs Phishing Detection Task 

To examine the overlapping and unique activity associated 

with the phishing task and a visual control task, we compared 

the phishing with the phishing control experiment using a 

paired sample t-test. Both tasks elicited significantly increased 

activity in the visual cortex, perhaps in line with the visual 

demands of the stimuli (p < .05, FWE corr.). However, the 

phishing task showed significantly greater and unique 

activation in various brain regions, such as RMFG and 
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bilateral insula (see Figure 3), a pattern not seen in the 

phishing control experiment (p < .05, FWE corr.). 

The anterior insula has been implicated in a variety of 

functions, such as affective and cognitive judgments. 

Activation in anterior insula, along with MFG, has been 

associated with making choices [44, 45]. The middle frontal 

gyrus also has been found to be playing a critical role in 

cognitive control especially in selecting an appropriate choice 

of action [46]. The activation of these important decision-

making regions of the brain in the phishing experiment (vs. 

the control experiment) suggested that the participants were 

conscientiously making an effort as to differentiate “fake” 

websites from “real” websites. 

 

Fig 3: Phishing vs. Phishing Control Activation. Both tasks show 
significant activity in the visual cortex. Phishing shows greater and unique 

activation in the right middle frontal gyrus (RMFG) and bilateral insula. (The 

top right corner brain image only shows little activation). 

(2) Phishing Detection Experiment Results: In the phishing 

task (Section IIIA), participants could be looking at the 

website address or the symbols or logos on the snapshot to 

make their decision of real or fake.  

 

Fig 4:  Contrast of “Real” and “Fake” Activation. Fake vs. Real activation 

regions include right middle, inferior, and orbital frontal gyri (RIFG/RMFG), 

and left inferior parietal lobule. Real vs. Fake activation regions include left 
precentral gyrus, right cerebellum, left cingulate gyrus, and occipital cortex. 

     Direct subtraction of real trials from fake trials, and fake 

trials from real trials revealed statistically significant activity 

in several areas of the brain that are critical in, and specific to, 

making “real” or “fake” judgments (p < .05, FWE corr.). For 

websites that the participants identified as “fake” (contrasted 

with “real”), participants activated the right middle, inferior, 

and orbital frontal gyri, and left inferior parietal lobule (see 

Figure 4) (p < .05, FWE corr.). On the other hand, when “real” 

websites were identified participants showed increased 

activity in several regions, including the left precentral gyrus, 

right cerebellum, left cingulate gyrus, and the occipital cortex 

(p < .05, FWE corr.). 

All participants of this study also completed the Barratt’s 

Impulsiveness Scale (BIS), a 30 item self-report instrument 

designed to assess the personality/behavioral construct of 

impulsiveness [1]. Studies have shown that BIS possesses 

reliability and criterion-related validity across samples [65]. 

Impulsive responding can result in behavioral errors, and such 

responses can be critical in computer security interactions 

where the consequences can be costly. Thus, our goal was to 

examine the impact of impulsive decisions on phishing task 

performance and identifying the neural circuitry underlying 

such behavior. A regression analysis involving BIS scores 

from participants as a covariate with whole brain activation 

during all trials revealed a statistically significant negative 

relationship in the MPFC (p < .05, FWE corr.) (See Figure 5).  

 

Fig 5 Impulsivity vs. MPFC Activation: There exists a negative relationship 

between impulsivity and brain activity in medial prefrontal cortex (MPFC). 

Interpretation and Discussion (Phishing Detection): 

Increased activation was found in the right frontal and left 

parietal regions of participants while deciding that a given 

website was “fake” (Figure 4). At one level, this is evidence of 

a strategic and controlled approach to completing a more 

difficult task (identifying fake websites). These findings are, 

however, consistent with at least one previous fMRI study 

[24], where participants were asked to identify whether a 

series of Rembrandt paintings were real or fake. This study 

found increased activity in RMFG when participants identified 

fake paintings. Fake websites may pose more of a challenge to 

participants as they may have to spend more time thinking 

about different attributes, sometimes recalling from memory. 

Middle frontal, inferior frontal, and inferior parietal areas have 

also been implicated in working memory [25]. Identifying real 

websites activated precentral, cerebellum, cingulate and visual 

areas of the brain (Figure 4). In addition to their motor 

functions, the cerebellum and precentral gyrus have 

topographically organized feedforward and feedback 

projections [26]. This network may mediate the decision-

making process of whether a given website is real. 

Yet another finding from the present study pertains to a 

brain-behavior relationship. Personality traits, such as 

impulsivity, may prove vital in the way an individual 
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approaches a cognitively demanding task. The present study 

found an inverse relationship between impulsivity and MPFC 

activity during phishing decisions (Figure 5). Evidence from 

previous studies suggests MPFC’s executive/regulatory 

function mediates competing and conflicting cognitive 

operations and scenarios [27, 28, 29, 30, 31]. Studies 

involving animal models suggest a pivotal role of MPFC in 

impulsive decision-making [32]. Functional MRI studies of 

delay discounting have found inverse correlations between 

participants’ impulsive choice of decisions and activity in 

regions like MPFC [33, 34]. Delay discounting refers to 

giving future consequences less weight relative to more 

immediate consequences (e.g., [35]). In other words, delay 

discounting can be construed as the tendency to choose a 

smaller, sooner occurring reward over a larger, later occurring 

reward. Similar finding of inverse correlations in the present 

study suggests the conflict and difficulty involved in making 

real or fake decisions during the phishing task for impulsive 

individuals. 

(3) Malware Warnings Experiment Results: In this 

experiment (section IIIB), there were three experimental 

conditions: abstract, warning, and non-warning. 

Comprehending a warning, relative to comprehending the 

news abstracts, elicited a statistically significant increase in 

activation in several regions of the right hemisphere, such as 

the RIPL, RMTG/RSTG, and cuneus (see Figure 6). 

Processing non-warning pop-ups, relative to news item 

abstracts, also elicited similar general patterns of brain 

activation, albeit with some differences depending on the 

condition. There was bilateral activation in middle/superior 

temporal cortex in this contrast. In addition, the right parietal 

activation was relatively more anterior, in the postcentral 

gyrus. 

 

Fig 6: (Warning or Non-Warning) vs. Abstract Activation. Activation 
regions include right inferior parietal lobule (RIPL), right middle/superior 

temporal gyrus (RMTG/RSTG), and cuneus, as well as bilateral 
middle/superior temporal cortex, and right parietal in the postcentral gyrus. 

(The second column brain images do not show any activation; they are 
included for the sake of completeness) 

One of the main goals of this study was to examine the 

brain areas that may mediate how people approach malware 

warnings. Our study participants showed significant increases 

in brain activity in several areas while processing warnings, 

compared to non-warnings. These regions included LIFG and 

LMTG, both primarily associated with processing language.  

There were also increases in activity in regions such as the 

MPFC, and in the bilateral occipital cortices (p < .05, FWE 

corr.) (see Figure 7). On the other hand, we did not find any 

increase in brain activity for the non-warning condition, 

compared to the warning condition. 

 

Fig 7: Warning vs. Non-Warning Activation. Activation regions include left 

middle temporal gyrus (LMTG), left inferior frontal gyrus (LIFG) as well as 

medial prefrontal cortex (MPFC), and bilateral occipital cortices. 

To examine personality traits and their impact on 

computer security decisions, as in the phishing data analysis, 

we used impulsivity scores as a covariate in a regression 

analysis with brain activity while reading security warnings. 

This analysis revealed significant negative relationship 

between impulsivity and brain activity in MPFC and 

precuneus (p < .05, FWE corr.) (See Figure 8). 

 

Fig 8: Impulsivity vs. Activation: There is a negative relationship between 
impulsivity and brain activity in medial prefrontal cortex and precuneus 

 Interpretation and Discussion (Malware Warnings):  

In this study, reading warnings as contrasted to reading 

news abstracts generated significant brain activity in regions 

such as the RIPL and RMTG/RSTG (Figure 6). This 

activation pattern provides further evidence of the role of 

these regions in different aspects of language comprehension 

(see [36, 37, 38]). Activation in these areas suggests that the 

participants in the present study were progressing through the 

warnings to understand the conveyed message and make a 

decision. 

There were also qualitative differences in activation 

between processing warning and non-warning pop-ups. 

Warnings generated statistically significant increase in activity 

in the language comprehension areas of the brain, such as 

LIFG and LMTG and in decision making areas like MPFC 

(Figure 7). In addition, there was a statistically significant 

activation in bilateral occipital cortices, which may provide 

evidence of how much visual attention and inspection 

participants were engaging in during warnings. On the other 
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hand, non-warnings, which usually were not a threat, did not 

generate any extra activation when compared with the warning 

condition.  

Impulsive decisions can affect user safety and security in a 

computer security interaction (as we demonstrated in the case 

of phishing). We found trait impulsivity in our participants, 

measured by the Barratt’s Impulsivity Scale, to negatively 

predict brain activity in MPFC and the precuneus while 

paying attention to security warnings (Figure 8). Thus, more 

impulsive participants had less activity in these regions during 

the malware task. This finding is consistent with findings from 

several previous neuroimaging studies. For example, the 

precuneus was found to be negatively correlated with 

measures of impulsivity in a response inhibition task [42]. 

MPFC grey matter volume has also been found to be 

negatively correlated with impulsivity [43].  

VI. FUNCTIONAL CONNECTIVITY ANALYSIS 

Functional connectivity (the synchronization of the time-
course of activity across different brain areas) was also 
examined to understand coordination among different brain 
regions in accomplishing phishing decisions

2
. The regions of 

interest (ROIs) for all analyses consist of the bilateral inferior 
frontal gyrus (LIFG, RIFG), inferior parietal lobule (LIPL, 
RIPL), middle frontal gyrus (LMFG, RMFG), middle 
temporal gyrus (LMTG, RMTG), occipital cortex (LOC, 
ROC), orbitofrontal cortex (LOFC, ROFC), superior temporal 
gyrus (LSTG, RSTG), and medial prefrontal cortex (MPFC). 
These ROIs were chosen based on the group activation for the 
entire task vs. the fixation contrast. This was done to insure it 
represented the activation pattern in individual subjects, rather 
than resorting to anatomical ROIs. Seeds were created using 
spherical binary masks (6mm-radius) and residual time-series 
were extracted from each study condition (phishing and 
phishing control), thus enabling the comparison of functional 
connectivity between the two. To reduce the number of ROI 
pairwise comparisons and control for Type I error, the 
functional ROIs were grouped into 4 different anatomical 
networks based on the lobe to which they belong: Frontal 
(LIFG, RIFG, LMFG, RMFG, LOFC, ROFC, MPFC), 
Parietal (LIPL, RIPL), Temporal (LMTG, RMTG, LSTG, 
RSTG), and Occipital (LOC, ROC). This grouping allowed us 
to examine connectivity across these four networks.  

Our first analysis consisted of examining functional 

connectivity of a specific ROI with the entire brain (whole-

brain analysis). This analysis served to examine functional 

connectivity from one specific region with every other region 

in the brain as a measure of global connectivity. For this, we 

chose four ROIs: LMFG, RMFG, LIPL and RIPL, the regions 

activated when participants were involved in phishing 

decision-making. In addition, these regions have also been 

implicated in several cognitive tasks such as decision- making, 

                                                           

2
 A similar analysis was performed for the malware warning 

task. However, no statistically significant results were 
obtained and are thus not reported in this paper. 

attention-shift, and visual processing, including our previous 

study (See Section V.B).  

   Using the residual time courses, these were correlated with 

every other voxel in the brain for every participant. A Fisher’s 

r to z transformation was applied to the correlation maps for 

each participant before averaging and computing statistical 

maps for each seed. We then statistically compared Phishing 

vs. Phishing Control using AFNI’s 3dttest++ (paired-sample t-

tests). To correct for multiple comparisons, 10,000 Monte 

Carlo simulations were computed to obtain a cluster-size-

corrected threshold of p < .05 family wise error (FWE). We 

also examined the relationship between each functional 

connectivity map derived from whole-brain analysis with the 

measure of impulsivity from each participant, and correction 

for multiple comparisons was performed as described above. 

Our second analysis of functional connectivity consisted of 

examining connectivity among all ROIs and networks listed 

above, also known as ROI analysis, where correlation 

coefficients were calculated across the residual time courses 

and were subsequently z-transformed using an inverse 

hyperbolic tangent function, followed by direct comparison of 

the z-transformed correlations between Phishing and Phishing 

Control using paired-sample t-tests. 

Whole-Brain Analysis Results: During the Phishing task, 

strong functional connectivity was detected in middle frontal, 

occipital, superior parietal, SMA, and superior temporal 

regions across all four seeds (p < .05, FWE corr.; LMFG, 

RMFG, LIPL, RIPL). On the other hand, during Phishing 

Control task, the same pattern was observed, although less 

robustly (Figure 9). This pattern of reduced connectivity 

during Phishing Control task was corroborated by the results 

of statistical comparison between the two tasks.  

 

Fig 9.a: Connectivity of LMFG with rest of the brain 

 

Fig 9.b: Connectivity of RMFG with rest of the brain 
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Fig 9.c: Connectivity of LIPL with rest of the brain 

 

Fig 9.d: Connectivity of RIPL with rest of the brain 

Fig 9: Phishing vs Phishing Control, Strong functional connectivity was 
detected in middle frontal, occipital, superior parietal, SMA, and superior 

temporal regions across all four seeds. 

     Using the LMFG seed, stronger functional connectivity 

was found with left calcarine sulcus, right angular gyrus, left 

middle occipital gyrus, right SMA, left and right IFG, RMFG, 

and right thalamus (p < .05, FWE corr.). No inverse effects 

were found (control > phishing). The RMFG seed showed 

stronger functional connectivity during phishing compared to 

phishing control with bilateral occipital gyrus, bilateral IFG, 

right thalamus, left superior medial gyrus, left hippocampus, 

right insula lobe, and RMFG (p < .05, FWE corr.); and 

stronger functional connectivity during phishing control 

compared to phishing with right supramarginal gyrus (p <.05, 

FWE corr.). The LIPL seed also showed stronger connectivity 

with left middle occipital gyrus, left caudate nucleus, right 

middle cingulate cortex, right precentral, and left SMA during 

Phishing Task (p < .05, FWE corr.). No inverse effects were 

found (control > phishing). Finally, the RIPL seed showed 

stronger connectivity with left occipital gyrus, left 

hippocampus, right thalamus, and left SMA (p < .05, FWE 

corr.); and stronger functional connectivity during phishing 

control compared to phishing with right supramarginal gyrus 

(p < .05, FWE corr.). 

Region of Interest and Network Analysis Results: This 

analysis revealed stronger functional connectivity during 

phishing compared to phishing control in the following ROI 

pairs: LIFG: LIPL (p = .03), RIFG: LMTG (p = .04), RIFG: 

LOCC (p = .03), RIFG: ROCC (p = .03), RMFG: LOCC (p = 

.0006), RMFG: ROCC (p = .004), LMTG: LSTG (p = .009), 

LMTG: RSTG (p = .008), RMTG: LSTG (p = .002), RMTG: 

RSTG (p = .0007), RMTG: MPFC (p = .03), LOFC: ROFC (p 

= .006), LOFC: MPFC (p = .02), and LSTG: MPFC (p = .02) 

(see Figure 10). No inverse effects (phishing control > 

phishing) were detected. However, these results did not 

survive multiple comparisons correction; therefore caution is 

advised when interpreting these results. On the other hand, 

after grouping the ROIs into their respective anatomical 

networks (See Methods), stronger functional connectivity was 

found during phishing compared to phishing control task in 

Frontal: Parietal (p = .02), Temporal: Occipital (p = .03), and 

Parietal: Occipital (p = .0004). Parietal: Occipital functional 

connectivity was the only significant result that survived 

multiple comparisons correction (Bonferroni correction, p < 

.05/6 = .008). No inverse effects (Phishing Control > 

Phishing) were detected. 

 

Fig 10: Phishing vs. Phishing Control, Functional connectivity detected in 

different pairs of Regions of Interests. 

 

Fig 11: Brain-behavior correlations, Negative correlation between 
Impulsivity and functional connectivity across four ROIs. 

Brain-Behavior Correlations: Using the functional 

connectivity map derived for each condition from all four 

ROIs, we found significant relationships (FWE corrected) 

with Impulsivity scores measured by the Barratt 

Impulsiveness Scale [1,4]. The RIPL seed showed negative 

correlations with left cerebellum (r = -0.7, p = .0002) and the 

RMFG seed also showed negative correlations with left 

cerebellum (r = -0.77, p = .0002) during phishing (Figure 11). 
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Interpretation and Discussion: Using two frontal and two 

parietal ROIs as seeds of interest, we found increased 

connectivity of this frontal-parietal network with the rest of 

the brain when engaged in phishing task. The phishing task is 

more complex and demanding, than the passive viewing 

involved in the phishing control task, thus eliciting stronger 

coordination among core regions of the executive network of 

the brain. The four seed regions in the present study are part of 

the frontal-parietal control system, which is usually engaged 

in tasks that require controlled processing, problem-solving, 

and decision-making [31,57,41]. The frontal-parietal control 

system is particularly engaged in tasks that elicit controlled 

processing related to the simultaneous consideration of 

multiple interdependent contingencies [58], conflicting 

stimulus-response mappings [40], and integrating working 

memory with attentional resource allocation [8]. 

During the phishing task, the RIPL and RMFG seeds 

showed negative correlations with left cerebellum on brain-

behavior correlations (see Figure 11). Regions such as RIPL 

and RMFG have been shown to be functionally connected 

with cerebellum and have an important role in supramodal 

cognitive [64]. Therefore, it is possible that individuals who 

have higher impulsivity may have decreased functional 

connectivity between these regions during the phishing 

condition. 

VII. CROSS-EXPERIMENT ANALYSIS 

A. Phishing vs. Malware 

Both phishing and malware tasks in our study involved 

decision-making, perhaps in slightly different ways. At the 

neural level, we examined the correlation between these two 

tasks in terms of the brain activity in two regions, LMFG and 

RMFG, which are associated with decision-making. We found 

a significant positive correlation in both LMFG and RMFG 

activity, particularly in the RMFG region (see Figure 12).  

 

Fig 12: Correlation in Phishing and Malware in RMFG Activation 

At the UI level the two tasks are different – warnings 

involve reading and comprehension, while phishing detection 

involves explicit decision making. Still, these results suggest 

that both phishing detection and malware warnings involve 

similar, higher level cognitive and neural processes. We may 

thus infer that participants’ behavior in these two distinct yet 

related tasks may be well-aligned in that one’s ability to heed 

malware warnings may be associated with his/her decisions 

about the legitimacy of websites and vice versa. 

VIII. DISCUSSION: STUDY INSIGHTS AND IMPLICATIONS  

Our neuroimaging data showed that users exhibited 

significant brain activation and connectivity in areas of the 

brain associated with decision making, problem solving, 

attention and visual search during the phishing detection task, 

while their accuracy in this task, as determined by behavioral 

data, was only slightly better than making a random guess (in 

line with a prior lab study [10]). This suggests that although 

the eventual decision made by the participants to differentiate 

between fake and real websites may be far from accurate, they 

expended considerable effort in making this decision as 

reflected by their brain activity in regions correlated with 

higher order cognitive processing. Perhaps this was because 

many of the participants did not know what markers (e.g., 

URL or logo) to look for on the sites to make their decisions. 

We note that a large fraction of our participants were majoring 

in a non-technical (non-computer) field. Overall, these 

findings further justify the need for specialized education and 

training for everyday users that focuses on phishing in 

particular (such as the efforts of [47, 48]) and security in 

general (such as [49, 50]). These training and awareness 

programs may help to improve users’ phishing detection 

performance and reduce the chances of their susceptibility to 

other attacks. At the same time, the findings also demonstrate 

the need for continued research on designing phishing 

resistant software solutions and user interfaces.  

Another important application of our work to cyber-

security pertains to the automated (subconscious) detection of 

“real” and “fake” websites based on neural signatures. Our 

study revealed differences in brain areas activated during 

identification of “real” and “fake” websites. This means that 

users’ may be subconsciously detecting differences between 

the two websites, although consciously they may fail to detect 

them. This result is in line with the study of real and fake 

Rembrandt paintings by Huang et al. [24]. These brain 

differences may be leveraged to build an automated real-fake 

detection engine in the future (e.g., in real-time using EEG 

measures). 

The malware warnings task triggered significant brain 

activity in regions primarily associated with language 

comprehension and reading. Importantly, actual malware 

warnings, in contrast to casual pop-ups, generated 

significantly more activation in brain areas governing 

language comprehension, visual attention, and inspection. 

This suggests that participants were reading through the 

warnings carefully to understand the message conveyed and 

attempting to make an appropriate decision. Indeed, this was 

validated via our behavioral data which showed that 

participants heeded warnings about 90% of the time (also in 

line with the recent large-scale field study of [11]). We 

therefore believe that our study provides a neurological basis 

for users’ ability to process and heed malware warnings, 

further validating the results of [11]. It should be noted that 

since our security warnings were simplified, our results may 

underestimate users’ performance when faced with malware 

warnings, which could be improved with better warnings 
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(such as those employed by modern browsers and variants 

thereof [11]). 

Another key component of our study was to asses users’ 

performance in user-centered security tasks based on one   

personality trait, impulsivity. Specifically, we studied the 

effect of impulsivity measured via a simple questionnaire. The 

study conducted by Pattison et al. [62] had found that less 

impulsive individuals were better at identifying and managing 

phishing emails. In our study, we did not find statistically 

significant relationship between impulsivity and task 

performance. However, we found that, in both phishing 

detection and malware warnings tasks, impulsive individuals 

showed significantly less brain activation and connectivity in 

regions governing decision-making and problem solving. This 

implies that impulsive behavior might be counter-productive 

to phishing detection and malware warnings task performance. 

A long-term impact of this finding can be in developing 

targeted security training programs. For example, an 

organization may concentrate their security training efforts on 

employees who are highly impulsive, as determined by their 

scores in the impulsivity questionnaire [1]. Similarly, school 

authorities may focus their online child safety efforts on 

children with high impulsivity levels. In such cases, for ethical 

and privacy reasons, we expect that users’ personality scores 

and neural activation levels would be kept private in secure 

storage (just like other personal records). These scores would 

then be used for identifying clusters of personnel needing 

different types of training. 

A unique advantage of our study was that it allowed for a 

direct comparison between phishing detection and malware 

warnings tasks. In this respect, we found significant 

correlation in participants’ brain activity governing decision-

making regions (bilateral middle frontal gyri). This suggests 

that both tasks involve, at a higher level, similar cognitive 

processes and that users’ performance in the two tasks might 

be correlated with each other. Note that, although language 

comprehension is unique to the malware task, both tasks 

involved a crucial decision making aspect. Broadly, this seems 

to indicate that the cognitive mechanisms underlying these 

security tasks are related, which may translate into similarity 

in users’ performance in the two tasks.  

Although fMRI scans are usually expensive, we believe 

that our methodology could also serve the purpose of security 

screening of individuals. Impulsivity questionnaires alone 

might be helpful in predicting users’ susceptibility to attacks 

in some cases. However, since those questionnaires are “self-

reported,” the users may, knowingly or unknowingly, not 

provide the accurate responses, although the BIS have been 

shown to possess high levels of reliability. By scanning users 

using neuroimaging techniques like fMRI, we can capture and 

analyze users’ brain signals, which users will not be able to 

change or lie about, and predict their potential for attacks in 

real-life. Such neural signatures governing users’ phishing 

detection capability (or lack thereof) – the primary subject of 

our study - has applications in organizations with high security 

requirements, such as national defense. 

IX. STUDY LIMITATIONS 

In line with any study involving human subjects, ours also 

has certain limitations. A primary limitation pertains to the 

constraints posed by the fMRI experimental set-up. Since 

participants were performing tasks inside the fMRI scanner, 

the set-up did not mimic “real-world” online browsing 

experiences. The discomfort associated with lying in a supine 

position and being stationary may have also impacted 

participants’ brain activity. In addition, the fact participants 

were being scanned may have impacted their brain activation 

and behavioral responses. The constrained interface (image-

based display, binary input and no internet connectivity, 

unlike a modern computer) available during the scans may 

have limited participants’ interactions with the system. For 

example, the participants were presented with images of 

websites rather than with the websites themselves in the 

phishing task. Similarly, the malware warning images were 

very simplistic and rudimentary due to equipment constraints. 

We believe this may have negatively affected participants’ 

performance in the underlying security tasks. Furthermore, 

although we corrected for participants’ head motion in the 

MRI scanner, it may have impacted fMRI data quality.  

During our neural analysis of the phishing detection task, we 

investigated only real and fake conditions, irrespective of the 

correct or incorrect responses given to them. The primary 

reason for not directly comparing correct and incorrect 

conditions for the phishing task was not having a large enough 

number of trials in each condition to have the necessary 

statistical power to detect a significant effect. We suggest that 

future studies consider the users’ judgments in neural analysis. 

Finally, the lab-based environment of the study may have 

impacted participants’ behavior, as they may not have felt 

actual security risks were occurring during the experiments.  

The effective sample size used in our study ranged from 22 

(phishing detection task and phishing control task) to 25 

(malware warnings task) participants (see Section V.B), which 

previous power analysis studies have found to be optimal. For 

instance, statistical power analysis of event-related design 

fMRI studies has demonstrated that 80% of clusters of 

activation proved reproducible with a sample size of 20 

subjects [55]. 

X. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented an fMRI study to bring insights 

into user-centered security by focusing on phishing detection 

and responding to malware warnings. Our results provide a 

largely positive perspective towards users’ capability and 

performance vis-à-vis these crucial security tasks. We found 

that users showed significant brain activity in key regions 

known to govern decision-making, attention, and problem-

solving ability (phishing and malware warnings) as well as 

language comprehension and reading (malware warnings). 

Apart from that, we saw strong functional connectivity in 

several regions of the brain while performing the phishing 

task. This level of activation and connectivity indicates that 

users were actively engaged in the tasks and were not ignoring 

or bypassing them (as prior lab studies have concluded [12, 
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13, 14, 15, 16, 17]). In the case of the malware warnings task, 

brain activity and behavioral performance (accuracy) were 

complementing each other validating that users heed malware 

warnings with a high likelihood (as also shown by a recent 

field study [11]). For the phishing task, however, task 

performance was poor despite significant brain activity 

associated with decision making. This divergent result 

demands future investigation. It could be attributed to users’ 

lack of knowledge as to the markers for “fake” vs. “real” 

website decisions (e.g., URLs), which may be overcome by 

user education and training. We also demonstrated that 

individuals with higher impulsivity may not utilize brain areas 

(MPFC) associated with making decisions of a conflicting 

nature as efficiently as non-impulsive individuals and may 

result in poorer cognitive and behavioral outcomes. This 

suggests it would be valuable to study whether individual trait 

characteristics should factor into user-centered security 

design. Finally, we discovered a high degree of correlation in 

brain activity with respect to decision-making regions across 

phishing detection and malware warnings tasks. This 

correlation suggests users’ behavior in one task may be 

predicted by their behavior in the other.   

We see a clear path-forward for subsequent research using 

neuroimaging techniques (e.g., fMRI, EEG or fNIRS) to 

inform the design of user-centered security systems. In the 

long-run such studies may provide a neural signature for poor 

and good security decisions which can be used for predicting - 

as well as correcting - users' security behavior. Future research 

may conduct subsequent evaluation with diverse participant 

samples, study the effect of warning fatigue or habituation, 

consider user-centered security domains other than phishing 

detection and malware warnings (e.g., password memorization 

and recall), and evaluate the effect of security training and 

education on users’ performance. 
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